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COMPUTATIONAL METHODS FOR THE SIMULATION OF 
NONCONVEX VARIATIONAL PROBLEMS WITH 

APPLICATIONS TO SMART MATERIAL 

ABSTRACT 

An interdisciplinary research group in modeling, analysis and simulation was - 
established at Florida A&M University (FAMU).This group set as its scientific 
goal the development of robust computational algorithms that are well suited for 
nonconvex variational principles, and other nonlinear problems that arise in the 
study of highly nonlinear materials. The equally important second goal of the 
group was to enhance the participation of under-represented minorities in applied 
disciplines connected to emerging technologies that are important to the Air Force 
Office of Scientific Research. Mechanisms used for meeting these goals include 
the strengthening of the infrastructure for research at FAMU, strengthening of 
the existing relationship between AFOSR and FAMU, and enhancing the existing 
relationship between FAMU, Carnegie Mellon University, University of Minnesota, 
and North Carolina University. This report describes the background and overall 
research goals of this project, and delineates the accomplishments made thus far. 
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1. Introduction 

Florida A&M University has established an interdisciplinary group in modeling, 
analysis, and simulation. The main scientific goal of this group is the develop- 
ment of robust computational algorithms for nonconvex variational principles, 
and other nonlinear problems that arise in the study of highly nonlinear materi- 
als. This group was composed of James C. Turner Jr. and Yanzhao Cao from the 
Department of Mathematics at Florida A&M University, and consultants Richard 
James (University of Minnesota), David Kinderlehrer (Carnegie Mellon Univer- 
sity), Mitchell Luskin (University of Minnesota), and Gregory Forest (University 
of North Carolina). 

An additional goal for Florida A&M University (FAMU) was the establishment 
of a Center for Computational Science (CCS). The aim of this Center was to pro- 
vide world-class education and research in areas that are essential to the nation's 
scientific progress and economic competitiveness. The mission of the Center is to 
strive for a productive education and research environment, with innovative edu- 
cational teaching techniques, effective use of state-of-the-art technology, seminars, 
visitors, conferences, and publications as its visible signs of success. It was pro- 
posed that the CCS become the primary location of activities supported by this 
grant. Funding from this grant was instrumental in developing an infrastructure 
for research, where there is 

• release time for research faculty; 

• summer research activities; 

• up-to-date computing facilities; 

• visiting scholars'; 

• support for undergraduate students. 



2. Scientific Program 

2.1. Optimization and Control Strategies in Fiber Manufacturing 

The primary objective of this research is to merge novel methods for control 
of polymer extrusions with focused fiber manufacturing issues. The secondary 
objective is to develop finite element algorithms that solve specific model equa- 
tions. When combined with experiments these algorithms yield fundamental re- 
lationships between material properties of industrial fluids (agricultural sprays or 
polymeric liquids) and measurable flow length scales found in laboratory experi- 
ments. Each of these objectives involves the development and application of new 
mathematical and numerical methods for problems defined by the industrial and 
manufacturing community. 

In ploymer extrusion processes, one is often interested in maintaining a quasi- 
uniform temperature, so as to reduce material (extrusion product) inhomogeneity, 
throughout the extrudate cooling process. As a preliminary step we have studied 
the following simplified case: seek a uniform temperature distribution at the exit 
under a steady state condition. To achieve a uniform temperature distribution at 
the exit we adjusted the heat flux on the surface of the pipe near the exit. 

The extrudate in question is assumed to be a viscoelastic fluid of the Oldroyd 
type, e.g., polymer melts with a fast relaxation mode. Here u denotes the velocity 
field, p the pressure field, T the temperature field, and r the purely elastic part 
of the extra stress. Also, D =|(Vu - VuT), W = |(Vu + VuT) and DaT = 
(u • V)r + rW - Wr - a(Dr + TD), where -1 < a < 1. Next, let Re, We 
and u! be the Reynolds number, Weissenberg number and retardation parameter, 
respectively. With these definitions the governing equations for an Oldroyd type 
fluid, in dimensionless form, is given by the Navier-Stokes equations 

Re(u- V)u + Vp = (l-u)Au + divr + f, in ft, (2.1) 

the incompressibility constraint 

divu=Q    in ft, (2.2) 

the constitutive equation (Oldroyd Model) 

T + WeDar = 2uT>   in ft, (2.3) 

the boundary condition (for this preliminary study) 

u = h   an T, (2.4) 



the energy equation 

-KVT + (U.V)T = Q + 2/Z(VU + VU
T
) :(VU + VU

T
)      in   SI,      (2.5) 

and with additional boundary conditions 

T   =   0     <mTD, (2.6) 
dT 
—   =   HN   onTNur0, (2.7) 
dT 
dn g cm Tc. (2.8) 

In this setting the data functions f, Q, Hjy, and h are assumed known; the control 
g is to be determined so that hot spots are avoided. The constants K and fj, depend 
on the thermal conductivity coefficient, density, specific heat at constant volume, 
and viscosity coefficient of the fluid. We assumed that buoyancy effects can be 
neglected, and thus the temperature variable does not appear in (2.1). 

Two means of obtaining a uniform temperature distribution have been con- 
sidered. The first involves making the gradient of the temperature along the 
boundary T0 small. Thus, for example, given a velocity field u, we would seek a 
temperature field T and control field g such that the functional 

Af (T, g) = | jT |VST|2 dT + f J   |g|2 dT (2.9) 

is minimized, of course, subject to the constraints imposed by the flow equations 
(2.1) — (2.5). Here, Vs denotes the surface gradient operator, e.g., in 9ft2, the 
tangential derivative operator d/dr. The non-negative parameters a and 6 can be 
used to change the relative importance of the two terms appearing in the definition 
of M. These constants may also be used as penalty parameters. The appearance 
of the control g in the definition of M is necessary because we are not imposing 
a priori limits on the size of this control. The minimization of (2.9) results in a 
quasi-uniform temperature distribution along the boundary segment T0. This is 
a result of the fact that surface derivatives of the temperature are forced to be 
small. Another means of achieving the desired result is to try to directly force 
the temperature field itself to be quasi-uniform. In this setting, given a velocity 
field u, we would seek a temperature field T and a control field g such that the 
functional 

3 (T'g) = h JTo 
|T - Td|2 dT+y / |g|2 ^ <2-10) 



is minimized subject to (2.1) - (2.8), where Td is some desired temperature dis- 
tribution, e.g., a quantity close to the average temperature along Tc for the un- 
controlled system. Once again the non-negative parameters 7 and 6 can be used 
to change the relative importance of the two terms appearing in the definition of 
3 as well as to act a penalty parameters. 

2.1.1. The Optimization Problem, Existence of Solutions, An Optimal- 
ity System 

Here we give a precise statement of the optimization problem and results obtained. 
We first note that (2.1)-(2.4) uncouples from (2.5)-(2.8). We may solve for (u,pr) 
from (2.1)-(2.4) once and for all and then substitute them into (2.5)-(2.8). Thus, 
the only state variable is T, i.e., the temperature field, and the only boundary 
control variable is g. The state and control variables are constrained to satisfy 
the system (2.5)-(2.8), which are recasted into the following weak form: find 
T € H}j(ty = {SeH1(ty:S = 0  on TD} such that 

«o(T,S) + c(u,T,5) = (Q,5) + «(g,S)rc + K(HJv,5)rjv   VSe#i(ft), (2.11) 

where 
Q = Q + 2/i (Vu + (Vuf) : (Vu + (Vu)T) 

For each possible control function g, we have established the existence of a 
unique corresponding state function T. 

Lemma 2.1. For every gEi2 (rc,), there exists a unique T £ H\, (Q) such that 
(2.11) is satisfied. Moreover, 

\\T\\i + \\T\\o,rc < C (Uglier + IIQIIo + l|Hiv||0>rjv) • 

The admissibility set is defined by 

Uad = {(T,g) € Hi (SI) x L2 (rc) : 3(7\g) < 00,      (2.11) is satisfied} . 

Then, (T, g) G Uad is call an optimal solution if there exists e > 0 such that 

9f(f,$)<3(T,g) VCT.gJetf«, 



satisfying 
|T-T ||i + ||g-g||0)rc<e. 

Making use of the Lemma, we obtained existence and uniqueness of optimal 
solutions. We also obtained the optimality condition 

9 = -\*\TC (2-12) 

where # is the solution of the adjoint state equation 

K a (R, *) + c (u, R, #) - -8 (R, T - Td)Tc =0 \/ReHl
D (Ü).       (2.13) 

Elimination g from (2.11) and combining with (2.13), we obtain the optimality 
system 

Ka(T,S) + c(u,T,S) + ^(*,S)Tc = (Q,S) + K (HN,S)TN      V S G Hb(Q), 

(2.14) 
and 

Ka(R,*) + c(u,R,*)-\(R,T-Td)rc=0      V ReH&Sl).        (2.15) 
o 

Thus, the optimal state, i.e., the temperature distribution T, can be found by 
solving the coupled system (2.14)-(2.15), which also provides the optimal co-state 
$. The optimal control g can then be deduced from (2.12). 

2.1.2. Finite Element Approximation, Error Estimates, and Iterative 
Methods 

Next, we constructed a finite element algorithm for determining approximations of 
the optimality system (2.14) - (2.15) as follows: seek Th € Wh and &h € Wh such 
that 

Ka(Th,Sh)+c(u,Th,Sh)+?;(*\Sh)Tc = (Q,S
H
)+K (HN,Sh)rN      V Sh £Wh 

(2.16) 
and 

Ka(Rh,*h) +c(u,R\*h) --8{R
h,Th -Td)Tc =0      V Rh £Wh.    (2.17) 

Although the optimality system is linear, the coupling of u and * makes the 
derivation of the error estimates nontrivial. To obtain our error estimates we 
applied the Brezzi-Rappaz-Raviart theory. 



Theorem 2.2. Let (T,$) and (Th,$h) be the solutions of (2.14)-(2.15), and 
(2.16)-(2.17), respectively. Assume that T, * € #m+1(ft) n H^ft) for some 
1 < m < k; also that the approximation property 

inf   \\S - Sh\l < Chm \\S\\m+1 VS € Hl
D{ü) andO<m<k      (2.18) 

shewh 

holds. Then, 

WT-T'l+WG-^l < Cniax ||, 1, i| /,- (lIQIU,! + N^ivllr^^.!^ + l|Trf||rjv,^-i/2) 

(2.19) 
where C is independent ofh, 8,7, T, and *. 

An iterative algorithm for solving (2.14)-(2.15) is defined as follows: 
choose <&(°); 
for n = 1,2,..., solve, for T<n\ 

Ka(TW,S)+C(U,TW,5) = -^(*(""1)-,S)rc+(Q,5)+« (#*,S)Ttr V 5e fl* (fl); 

then solve, for 4>(n), 

Ko(Ä,*(n))+c(u,Ä)#W)=i(Ä,T(n)-Td)rc  V RtHKü). 

The convergence of this algorithm was obtained by observing that it is effec- 
tively a gradient method for the following minimization problem: find g £ L2(Tc) 
such that /«(g) = 3(T(g),g) is minimized where T(g) € H})(Q) is defined as the 
solution of (2.11). 



2.1.3. Computational Techniques 

Computational results have been obtained using the most powerful computational 
technique developed thus far, and making effective use of high-performance com- 
puter technology. In particular, computational results for a model with an 01- 
droyd type fluid have been obtained, demonstrating the effectiveness of the theory 
and code as well as their potential applicability to problems of interest to the Air 
Force Office of Scientific Research. 

We end this section by presenting computational examples considered. Let 
Q, be the unit square (0,1) x (0,1). Let r = Tc (J ^D (J FJV U TO be as shown in 
figure 1. 

Figure 1. Computational domain 



The finite element spaces Wh axe chosen to be piecewise linear elements on a 
triangular mesh. All the numerical results make use of the following parameters 
and data: 

parameters:    K = 1/0.73;     Re = 1;     u = 1/2 

boundary data:    T = 1    on FD;     — = 0     on TN \^J T0; 

heat source   :        Q = —^ ( 9n2 cos(37rrr) cos2(ny) - 4?r2 sin2(-TTX) cos(2iry) J 

1Ö7T 
+(1 - y2)~Y sin(37ra;) cos2(7ry); 

volcity profile:     u = (1 — y2,0), 

elastic extra stress profile:    r \-y -vj' 

pressure profile:    p = 4(1 — y2) — x. 

In the functional (2.10) we choose 

Td = 3.5. 



for 
For the data given above, the exact solution of the uncontrolled problem, i.e., 

dT 
dn 

= 0    on rc, 

is given by T = 5sin2(|7nr) cos2 (717/) + 1. 
We compare the temperature distribution in the uncontrolled case with the 

optimal temperature distribution in the controlled case for which 

dT 
dn 

= g    on Tc, 

where g is the control such that the functional (2.10) is minimized. Approxima- 
tions to the optimal state and co-state are computed form (2.14)-(2.15); the ap- 
proximate optimal control gh is then obtained from (2.12), i.e., gh = —(1/5)$ \Tc. 
All of the computational results shown below were obtained with the use of mesh 
size h — JTJ. Of course, calculations with varying mesh sizes were performed. Since 
these merely verified the errors estimates, we do not report on them here. 

Specifically, figures 2-4 deal with the following cases: 
2. Exact, uncontrolled temperature contours and; Optimal temperature; 

Figure 2. Temperature contours: uncontroled and controled. 
Optimal boundary control on Tc- 
(Tc is the top boundary segment.) 

[To is the right boundary segment.) 

10 



3- Exact, uncontrolled temperature surfaces and; Optimal temperature; 

11 



4. Optimal boundary control. 

0.00 

■3.13 

-6.25   - 

-9.38 

■12.51 

•15.63   - 

-18.76 

Figure 4. Optimal boundary control on Tc- 
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2.2. Simulation of Magnetoelastic Interactions 

Terfenol-D, which is Tbx Dyx_x Fe2, x = 0.3, is a magnetoelastic material ex- 
hibiting a complicated microstructure that responds easily and dramatically to 
an applied magnetic field. It has the largest known magnetoelastic coupling, with 
huge magetostriction and small magnetomechanical losses, giving it extraordi- 
nary promise for use as an actuator and sensor material. Its microstructure or 
fine scale morphology has a clear role in its macroscopic behavior. Two issues 
are paramount. First, the presence of several stable variants at a given temper- 
ature reflects a complicated potential well structure for the free energy of the 
material. Second, the presence of spatially oscillatory behavior at the small scale 
suggests competition between the free energy of the material and loading or other 
environmental effects. Both of these features represent highly nonlinear processes. 

For large specimens, such as those encountered in usual actuator applications, 
the presence of complicated domain structures has hindered the usefulness of 
theories which seek to incorporate elastic effects. A theory of magnetostriction 
which is micromagnetic in nature has been developed by consultants Richard 
James and David Kinderlehrer. The focus is on the precise specification of the 
potential wells of the anisotropy energy. There are many parallels between shape- 
memory and giant magnetostrictive behavior. A key difference is that shape 
memory materials undergo a first order transition resulting in 2-15% strain while 
Terfenol suffers a second order transition with only .25% strain. 

By advancing and implementing analytical methods it has been shown that the 
theory of magnetostriction successfully predicts the equilibrium microstructures 
observed in Terfenol-D. The theory furthermore suggests a mechanism for the 
giant magnetostriction related to exchange of stability of the variants within a 
laminate or among laminate systems on which a magnetic field has been applied. 

To understand this phenomenon more completely, in particular away from 
equilibrium, the interdisciplinary group has established a broad program com- 
posed of experiment, theory, and simulation. 

2.2.1. Simulation Program 

The energy of the magnetoelastic systems is described in terms of a free energy 
of the form 

E(y,m,H)   =    [ {W(Vy(x),m(y(x),x) - H -m(y))detVy(x)} dx + [  \Vu\2 dx 
Ja Jx3 

(2.20) 

13 



|detVy(rr)m|   =   \   in VL     and    Au = div (mx^n)) in 5ft3, 

where y(x) is the elastic deformation , fi C 5R3 is a reference domain, m(y) the 
magnetization , and H the applied magnetic field. The second equation in (2.20) 
represents the magnetostatic equations from Maxwell's Theory. Since we are 
dealing with a large body approximation, exchange energy is ignored. The stored 
energy density W( A, m, x) is highly nonconvex and gives rise to a functional which 
is not lower semicontinuous. 

The simulation program started with the simulation of hysteretic behavior in 
two dimensions for 

£(H,m)   =    [((f)(m,x) -H-m)dx+l [  \Vu\2 dx (2.21) 
Ja * Jm 

Au   =   div mxn   in &2        |m| = 1   in fi. (2.22) 

where an applied field is introduced in the system and cycled through a range of 
values. 

Using methods of nonlinear analysis computational results and diagnostics 
have been explored. Since the energy picture is mesh independent, computing on 
a fairly coarse grid suffices to establish its character. Kinderlehrer and Ma deter- 
mined analytically the hysteresis loop. For a magnetic system, this analysis rests 
on the introduction of a shadow energy for a simplified version of the system. 
It is believed that this simplified version may suggest possible dispersive inter- 
actions which may be attributed to a shape-memory or pseudoelastic body. It 
was observed that the simulation displays a modified Stoner-Wohlfarth scenario. 
This means that the system evolves through stable/metastable/unstable/stable 
regimes. By modeling the nature of the instability one is able to determine the 
critical field event. 

These collaborators than modified the simulation to include magnetoelastic 
effects, in the context of linear elasticity. The linear elastic magnetostrictive 
energy has the form 

4>{e,a)   =   (ßelastic(e) + (t>em(e,a)+(f>an(a) 

e   =   - (Vu + WuT),    m = Ma,    \a\ = 1, 

where 

14 



<t>elastic(e)     =     2 IL, & + C12(£H£22 + ^22^33 + 633611) + ^44(4* + £23 + 4»)i 

^em(e,tt)    =    &0tr£ + &i^£üQ!? + 62(£liai«2+£2302^3+6l3«l«3), 

A two dimensional model was obtained by projecting onto the (0 — 11) plane, 
making the assumption that ^astic is isotropic, and changing coordinates so that 
(—211) is x\ and (111) is x2. In this setting 

with 

(j)+(s, a) = (parade) + <f)em(e, a) + <f)an(a) 

ic(e)   =   /^4 + ^A(tre)2, ^ > 0, A > 0, 
/ ^—"\ 

(f>tm(e,a)   =   6(en - 7ei2)((ai)  -70102) - 6 2^%^^, 

<f>tn(a)   =   «((«l)2 - 70102)2, « > 0. 

Here 7 = 2\/2, b < 0, b' > 0, with & approximately equal to —62, and &' is roughly 
&x — 62. To calculate the magnetostriction in the original (—211) direction, now 
the (1,0) direction, one must first compute the average of e and then apply the 
formula. Thus, one has 

53 Sijßißj =£11 ■ 

Unfortunately, the above simulations do not give satisfying results, i.e., the 
energies described above do a poor job of resolving the microstructure. The 
challenge facing the FAMU group was to develop a better simulation. 

2.2.2. Computational Techniques and Code Development 

The global infimum of the energies described in section 2 are not attained. How- 
ever, it is assumed that the underlying physical microstructure can be represented 
by suitable minimizing sequences. In order to develop a computer simulation 
which can provide us with an efficient and effective selection principle for such 

15 



minimizing sequences, our strategy is to employ the most powerful computational 
techniques developed thus far, develop new ideas and make effective use of high- 
performance computer technology. Thus, we have simultaneously been working 
on two different approaches: (i) a global minimization method based on the idea 
of simulated annealing; and (ii) a study of the mmimization of a relaxed problem 
where generalized solutions in terms of Young measures for the original noncon- 
vex problem are approximated. Both of these approaches must somehow address 
the following challenging problem: loss of uniqueness of global minimum, the 
emergence of abundant local minimum or even saddle points. 

A state-of-the-art computer model, developed by Carnegie Mellon researchers, 
that can simulate unconstrained minimization of the angular variable and the 
displacement for linear magnetostriction has been developed. The hysteresis dia- 
gram is computed using a continuation of solutions with respect to increasing and 
decreasing the applied magnetic field along the xi-axis. Work is currently under 
way to extend this code to nonlinear magnetostriction. 

Educational activities in this area of research included the training of a large 
number of minority undergraduate and graduate students. We have also offered a 
special lecture series on modeling and simulation of problems arising in the study 
of materials science. Also, special discussion groups were held. These activities 
brought some of the researchers and their research into the classroom. 

2.3. Controllability for Parabolic Equations 

In many problems of interest to materials science and engineering there arises the 
need of controllability for parabolic equations. The purpose of this research was to 
investigate exact controllability problems for systems modeled by linear parabolic 
differential equations. Our aim of investigation has been to examine the limit 
behavior of the corresponding optimal control problem. Using this technique we 
obtained a new condition on the exact controllability of the system. 

We now give a statement of the problem. Let Q be a bounded domain in R*. 
For fixed T, let Q = [0,T] x Q and E = (0,T) x du. Let A be a second order 
elliptic differential operator denned by 

AM = - E it («« w J^ ftx)) +c w v-        (2-23) 
We assume that c> 0 on ft and that the matrix (ajj (x))is symmetric and positive 
definite. 

16 



With these definitions, we have studied the following initial boundary value 
problem 

where 

!♦*> 
=   0        in Q, 

dy 
du 

=   u(t,-x)             on E, 

(V(x,0) =   t/o(x)         in fl, 

d 
du 

A           d 

(2.24) 

with ni being the ith component of the outward unit normal to dCl. We say that 
the system is exactly controllable for a given state y if there exists u € L2 (E) such 
that the solution y of problem (2.23 ) also satisfies 

v(r, •) = #•)• 

Next, we define the cost functional Je by 

Mu) = \ f(v(T,x,u) - y(x))2 dx+| J u2(*,x) dxdt, 

where y = y(t,x;u) satisfies (2.24). u£(t,x) is said to be an optimal control if 
it satisfies 

Je(ue)=   inf:    Je(«). 

Our weak formulation of problem (2.24) takes the form 

y(0,x)   =   y0(x), (2.25) 

where the bilinear form a : H1 (f2) x H1 (ti) —► R is given by 

17 



where A, B, U, and V are the appropriately chosen admissible sets. 
Remark 1. State equations (2.26) and (2.27) are given in an abstract form 

that may represent partial differential equations or more general functional rela- 
tions. However, we shall always take them to represent partial differential equa- 
tions. These equations are also written in strong form. In order to place them 
in an abstract weak formulation, let W denote a normed space of test functions 
w(x) = (wi,wi), where 

Wle(Lg(ft))
r,     w2 G (Lq(n)Y     and      - + - = 1 

with 1 < p < oo, and 1 < q < oo. We define the operator h(w,u,v) : W —► §ft by 

Ä(w) = / fo(w,u(x),M(x,u))wi dx +     g0(x,(K(€,v))(x),v(x))w2 dfx 
Jn JT 

where foWi and #0^2 denote inner products in 9ftr and W , respectively. Instead 
of state equations (2.26) and (2.27) we may consider a single state equation in the 
weak form 

/(w) = h(w), 

where the operator I replaces both operators L and /. 
Thus, when considering control strategies, we are interested in the problem of 

minimizing functionals of the form 

9( i(w,u,v)= [ f(w,u(x),M(x,u))dx + /g(x, (#(£,v))(x),v(x)) dfx     (2.30) 
Ja Jr 

with state equation (in weak form) 

Z(w) = h(w)       for aJlweW, (2.31) 

and constraints 

M(x,u)   G   A,     u(x)eU      a.e. infi, (2.32) 

K(x,u)   G   B,     u(x)eV      /i-a.e.onffi. (2.33) 
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Remark 2.   Of particular interest is the case where the element w of an 
admissible triple (w,u,v) uniquely determines the controls u and v. 

Remark 3. In practice one may define the control set U by 

U = {u G L~[0,T\ :   NL<M} (2.34) 

for M > 0. 

Control Strategy 1. A special case of the above abstract optimal control 
problems is: How do we choose a control function g , so that a crystal interface 
will approximate a prescribed desired profile? 

Let Q, be a region, occupied by the crystal. Then, a mathematical description 
of this control problem proceeds as follows. If C(x,t) is a positive continuous 
function, and ij)(t) is a continuous positive function for 0 < t < T. Then, a 
possible cost functional may be one of the form 

3(u,g) = J(u) + lf   |Vs<7|2dT, (2.35) 

in which some desired optimization objective J(u) is considered in conjunction 
with the cost of applying the required control g, i.e., the norm of g. Here Vs is 
the surface gradient operator on the interface T and 6 is a fixed, sufficiently small 
parameter. The desired optimization objective J(u) that one could consider is 
the tracking functional for the interface. This functional, with its domain being 
the interface, has the form 

J(u) = A [ ip(t)[H(r,t) - C(r,t)]2dQ. (2.36) 
Jn 

Where A is a suitable positive constant, which reflects the different needs of each 
control strategy. 

We wish to minimize Q(u) subject to some appropriate state equations and 
boundary conditions. 

Control Strategy 2. 
In free-boundary problems one must use adaptive meshing that tracks the 

interface motion. The difficulty is that these schemes may not be able to han- 
dle topological changes without user intervention. This in turn makes real-time 
control inconvenient during the simulation. Berg, Yezzi, and Tannenbaum have 
explored an alternative approach [10].  In their approach one begins by writing 
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down the equations of motion of the evolving interface directly. In two dimensions, 
these are the equations of curve evolution. In this setting the moving interface 
is described by a family of parameterized curves, C : [0,1] x [0,t/] —► 3ft2. The 
evolution of the curve describing the interface is governed by 

^ = a(s,t)T + ß(s,t)N (2.37) 

where s parametrizes the curve, N is the normal vector, T is the tangent vector, 
and a and ß are velocity functions. Currently we are only considering the shape 
of the interface, thus we may take a = 0. Note that changing a only changes the 
curve's parametrization, and not its shape. In addition, if we assume that the 
motion of the curve is determined solely by the local geometry of the curve, then 

-g = ß(n)N (2.38) 

where K(S, t) is the curvature. 
There are several difficulties that one may encounter when seeking numerical 

solutions of curve evolution problems. For example, if curvature terms are absent 
or small, the solution will typically develop corners or shocks, even if the initial 
data is smooth. Osher and Sethian [11-13], and their coworkers, have developed a 
series of algorithms that successfully address many of the problems encountered 
in curve evolution problems. These algorithms employ a level set representation 
of the interface, and are the foundation of the numerical approach developed by 
Berg, Yessi, and Tannenbaum [14]. 

The idea of applying the theory of curve evolution for modeling crystal evolu- 
tion has been considered by Srinivasan, et al. [15]. Similar real-time interface esti- 
mation and control techniques have been developed for reactive etching processes 
by a number of authors. For example, Shaqfeh and Jurgensen [16], and Singh, et 
al. [17] have done pioneering work in this area. Adalsteinsson and Sethian build 
and greatly extended these techniques to a novel approach for modeling etching, 
deposition, and lithography fabrication processes [ 13,18]. 

It is our intension to explore the possible use of these algorithms for tracking 
the evolution of the crystal interfaces. The focus of our study has been the 
development of techniques that directly control the evolving features of the crystal 
interfaces. This is a challenging task, however the potential benefits are large. The 
level set techniques show potential for real-time control. 
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2.4. Controllability for Parabolic Equations 

In many problems of interest to materials science and engineering there arises the 
need of controllability for parabolic equations. The purpose of this research was to 
investigate exact controllability problems for systems modeled by linear parabolic 
differential equations. Our aim of investigation has been to examine the limit 
behavior of the corresponding optimal control problem. Using this technique we 
obtained a new condition on the exact controllability of the system. 

We now give a statement of the problem. Let Q be a bounded domain in R?. 
For fixed T, let Q = [0,T] x Q and E = (0,T) x <9fi. Let A be a second order 
elliptic differential operator defined by 

A(y) = - E Yx (a^ w J*: (*»x)) +c w v- (2-3Q) 

We assume that c > 0 on ft and that the matrix {a^j (x))is symmetric and positive 
definite. 

With these definitions, we have studied the following initial boundary value 
problem 

^ + A(y)   =   0        inQ, 

dy 
7T—   =   u(t,x) onT,, 
du 

(y(x,0)   =   y0(x) in ft, (2.40) 

where 
d       A d 
dv ~ E a^Ui'dXi 

with Hi being the ith component of the outward unit normal to 80,. We say that 
the system is exactly controllable for a given state y if there exists u £ I? (E) such 
that the solution y of problem (2.39 ) also satisfies 

y(T, •) = y(-). 

Next, we define the cost functional Je by 
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Mv) = \ f(y(T,x,u) - y(x))2 dx+| /w2(i,x) dxdt, 

where y = y(t,x;u) satisfies (2.40). us(t,x) is said to be an optimal control if 
it satisfies 

Je(ue)=  id\    Je{u). 
«€i2(Q) 

(i-*)+" 
Our weak formulation of problem (2.40) takes the form 

.(y,0)   =   <«,^> for 0 G F1 (ft), 

y(0,x)   =   jto(x), (2.41) 

where the biHnear form a : H1 (fi) x H1 (ft) —► R is given by 

d(f> dip 
a{M) =    \J2 aijWj^r.~ä7. + c(x)<^ rdx 

. . „ dxi dxj 
a   ^J=1 

Our main results of this research has been obtained by using an operator 
representation of the terminal state. That is, we define an operator R : L2(ft) —* 
L2(ft) by 

(e + R)(y(T)-y)=e(y-E(T)v) 

where E(t) is the solution operator for the problem 

^ + Mw)   =   0     onQ, (2.42) 

^   =   0 onE, (2.43) 
ov 

w(0,x)   =   z(x) in ft, (2.44) 

i.e. w(£,x) = i?(£)2:(x). 

The following properties of the operator R have been established: R is a 
compact operator in I/2 (ft); R is symmetric and semi-definite; if £ is analytic, 
then ker R = 0. 
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Note that system (2.42) - (2.44) is said to be approximately controllable if, for 
any given y and 6 > 0, there exists a control u(t, x) and a function y(t, x) such 
that (?/(£, x),w(i,x)) is a solution of (2.40) and 

||y(T,x)-y(x)||<*. 

Approximate controllability is well known for linear parabolic differential equa- 
tions. However, the proof that we were able to obtain is different from standard 
proofs, in that it is constructive. 

Finally, using properties of R we obtained the following result on exact con- 
trollability of system (2.40). 

Theorem 2.3. Let ({e,}^ ,{^j}%i) be the eigensystem of R.      If 

y-E{T)y0£D{R-1\ 

then system (2.40) is exactly controllable. 
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Temperature Control In Polymer Extrusion Processesf 

Max D. Gunzburger 

L. Steven Hou 

James C. Turner 

Abstract. An optimization problem is formulated motivated by the desire to obtain uniform extrudate temperature at 
the die exit in a polymer extrusion process. Control is effected by adjustments to the heat flux along the surface of the pipe. 
An oplimality system of partial differential equations is derived from wliich optimal controls and states may be determined. 
Then, unite element discretizations of the oplimality system are defined and error estimates are provided along with an efficient 
solution algorithm for the discrete equations. Finally, computational results are given for a model example with Oldroyd type 
fluid, demonstrating the effectiveness of our theory and method as well as their potential applicability to industrial problems. 

1. Introduction 

In polymer extrusion processes, one is often interested in maintaining a quasi-uniform temperature, so 

as to reduce material (extrusion product) inhomogeneity, throughout the extrudate cooling process. In this 

paper, we will study the somewhat simplified case: one tries to obtain a uniform temperature distribution at 

the exit under steady state situation. The means we use to achieve such a uniform temperature distribution 

at the exit is to adjust the heat flux on the surface of the pipe near the exit. 

The extrudate in question will be assumed to be viscoelastic fluid of Oldroyd type such as polymer melts 

with a fast relaxation mode [10]. Let u denote the velocity field, p the pressure field, T the temperature field 

and T the purely elastic part of the extra stress. Let D = ^(gradu + graduT), W = ±(gradu- gradu7') 

and DaT = (u grad )r+rW-WT-a(Dr + rD) where -1 <a< 1. The parameters Tie, Wc and u are the 

Reynolds number, Weissenberg number and retardation parameter, respectively. The governing equations 

for the Oldroyd type fluid, in dimensionless form, is given by the Navier-Stokes equations 

Re(u • grad )u +grad p = (1 -w)Au + divr + f,    in ft , (1.1) 

the incompressiblity constraint 
divu = 0    in ft. (1.21 



the constitutive equation (Oldroyd model) 

T+WeDaT = 2uD   infi, (1-3) 

and, for simplicity, the boundary condition 

u = h   onT, (1-4) 

and also the energy equation 

-/cAT+(u-grad)T 

= Q + 2jx(grad u + grad uT) : (grad u + grad uT)    in Q , 
(1.5) 

with boundary conditions 
T=0   on Iß, (1-6) 

^ = HN   OUTNUTO, (
L7

) 
on 

?f=g   onrc. (1.8) 
on 

The data functions f, Q, HN, and h are assumed known; the control g is to be determined so that hot spots 

are avoided. The constants K and \x depend on the thermal conductivity coefficient, density, specific heat 

at constant volume, and viscosity coefficient of the fluid. See [11] for details. We assumed that buoyancy 

effects can be negelected, and thus the temperature variable does not appear in (1.1). 

Two means of obtaining a uniform temperature distribution come to mind.  The first is to make the 

gradient of the temperature along the boundary T0 small. Thus, for example, given a velocity field u, we 

would seek a temperature field T and a control field g such that the functional 

M(T,g) = U   |grad,T|2<fr + ^/   \g? dT (1.9) 

is mini linimized subject, of course, to the constraints imposed by the flow equations (1.5)-(1.8). Here, grad, 

denotes the surface gradient operator, e.g., in R2, the tangential derivative operator d/dr. The non-negative 

parameters a and 6 can be used to change the relative importance of the the two terms appearing in the 

definition of M as well as to act as penalty parameters. The appearance of the control g in the definition of 

J is necessary because we are not imposing any a priori limits on the size of this control. The minimization 

of (1.9) results in a quasi-uniform temperature distribution along the boundary segment T0 because the 

surface derivatives of the temperature are forced to be small. Another means of achieving the desired result 

is to try to directly force the temperature field itself to be quasi-uniform. Thus, now, given a velocity field 

u, we would seek a temperature field T and a control field g such that the functional 

J(T,9) = ±[   \T-Td\UT + ^f   \gfdT (1.10) 

is minimized subject to (1.1)-(1.8), where Td is some desired temperature distribution, e.g., something close 

to the average temperature along Tc for the uncontrolled system. The non-negative parameters j and 6 can 

be used to change the relative importance of the the two terms appearing in the definition of J as well as to 

act as penalty parameters. As will be demonstrated by numerical examples in §6, a small j is more useful 

in achieving quasi-uniform boundary temperature distributions, although it also reduces the accuracy of the 



approximate solution. We will examine the latter issue in §4. Numerical experiments show that both (1.9) 

and (1.10) work effectively for the desired objective. We will focus our discussion on (1.10) thoroughout this 

paper. 
Under the realistic assumption that u • n = 0 on TCUTN, we may prove the existence and uniqueness 

of optimal solutions and derive an optimality system, i.e., a set of equations from which the optimal control 

and state may be determined. Also, finite element methods are used to compute an approximate solution 

of the optimality system. Optimal error estimates are derived and numerical examples are presented. We 

have also developed an iterative algorithm to compute the approximate solution. The convergence of our 

algorithm is proved and a comparison with the direct method is made. 

Control problems for the fully coupled problem as well as temperature matching for the entire extrudate 

will be addressed elsewhere. 
We close this section by introducing some of the notation used in subsequent sections. Throughout, C 

will denote a positive constant whose meaning and value changes with context. Also, H'(V), s G R, denotes 

the standard Sobolev space of order s with respect to the set V, where V is either the flow domain fi, or its 

boundary T, or part of that boundary. Of course, H°(V) = L2{V). Dual spaces will be denoted by (•)*■ Of 

particular interest will be the space 

Hl(Ü) = {S€H\Q)     :     5 = 0   onTD}. 

Norms of functions belonging to #'(0), H>(T) and H'(TC) are denoted by || • \\, , || ■ |U,r and || • ||,,rc, 

respectively. 
The inner product in L2(Q) is denoted by (•, •), that in L2(T) by (■, -)r, that in L2(T0) by (•, -)r0, and 

that in L2{TC) by (-,-)rc- Since, in general, we will use I2-spaces as pivot spaces, these notation will also 

be employed to denote pairings between Sobolev spaces and their duals. 

We will use the bilinear form 

a(T,S)= /gradTgradSoKi   VT.SGtf1^) 
Jii 

and the trilinear form 

c(u,T,S)= /(u.gradT)S<ft2   VueH'(Q)   and   VT,S£Hl{Q). 
Ja 

These forms are continuous in the sense that there exist constants ca and cc > 0 such that 

laCr.s^cjriuisih  vT,seH\n) (l.n) 

and 
|c(u,r>5)|<ce||u||1||r||i||5||i    VuGH'(ß)   and   VT,SeHl(Q). (1.12) 

Moreover, we have the coercivity property 

a(T,T)>Ca\\T\\l   VTGtfo1^) (U3) 

for some constant Ca > 0. 
For details concerning the notation employed and the inequalities (1.11)-(1.13), one may consult, e.g., 

[1] and [7]. 



2. The Optimization Problem, Existence of Solutions, And Optimality System 

We begin by giving a precise statement of the optimization problem we consider. We will assume the 

domain 0 is a polygon in R2. We first recall that (1.1)-(1.4) uncouples from (1.5)-(1.8). We may solve for 

(u,pr) from (1.1)-(1.4) once and for all and then plug them into (1.5)-(1.8). Thus the only state variable is T, 

i.e., the temperature field, and the only boundary control variable is g. The state and control variables are 

constrained to satisfy the system (1.5)-(1.8), which we recast into the following weak form: find T G H^Q) 

such that 
Ka{T,S) + c(u,T,S) = (Q,S) + K(g,S)rc + K(HN,S)rN   VS G Hl

D(Sl), (2.1) 

where we have introduced the simplifying notation 

Q = Q + 2/i(grad u + grad uT) : (grad u + grad uT). 

Note that since we seek T G Jfß(Q), 
T=0   onlV (2-2) 

Throughout, we will assume that the given velocity field u is smooth and satisfies 

divu = 0    in fi        and       un>0    a.e. on Tc U TN. (2.3) 

Under these assumptions, we have the useful relation 

c(u, 5,5) = I I (u • n)52 dT > 0   V S <E H^Q), (2-4) 
2 Jr 

which can be derived by setting T = S in the following integration by parts formula: 

c(u,T,S) = J(un)TSdT-c(u,S,T). 

For each possible control function g, there exists a unique corresponding state function T. 

Lemma 2.1- For every g € L2(TC), there exists a unique T £ Hl(Q) such that (2.1) is satisfied. Moreover, 

\\T\U + ||r||o,rc < Cdlfflkrc + IMIo + H^lkr*) • (2-5)1 

The admissibility set Uad is defined by 

Uad = {{T, g) G #i>(fi) x L2(TC) : J(T, g) < oo, (2.1) is satisfied} . (2.6) 

Then, (T, g) G Uad is called an optimal solution if there exists e > 0 such that 

J(f, g) < J(T, g)   V (T, g) G Uad satisfying \\T - f\\x + \\g - g\\o,rc < e. (2.7) 

Based on the previous lemma, we can show the existence and uniqueness of optimal solutions. 

Theorem 2.2- There exists a unique optimal solution (f, g) G Uad- ■ 

Using techniques in e.g. [9] we may obtain the optimality condition 



where $ is the solution of the adjoint state equation 

ica(Ä1*) + c(u>Äf«)-i(Äir-r<,)re=0   VÄ€#i>(fi). (2-9) 

Eliminating g from (2.1) and combining with (2.9), we obtain the optimaliiy system 

Ka{T,S) + c(u,T,S) + j{*,S)ra = (Q,S) + K{HN,S)r„   V S € HhM (2.10) 

and 1 

Ka(R,*) + c(u,R,*)-±(R,T-Td)Tc=Q   V R G Hl
D(Q). (2.11) 

Thus, the optimal state, i.e., the temperature distribution T, can be found by solving the coupled system 

(2.10)-(2.11), which also provides the optimal co-state $. The optimal control g can then be deduced from 

(2.8). 

3. Finite Element Approximation, Error Estimates, and Iterative Methods 

In the usual manner, one may construct finite element subspaces Wh C H}j(Q) D C(O) parametrized 

by a parameter h that tends to zero. (In practice, h is, of course, related to a grid size.) We assume the 

approximation property (see [3]): there exist an integer k and a constant C such that 

inf   ||5-5h||i<CAm||5||m+i    VS € HJ,{Q) and 0 < m < k . (3.1) 

A finite element algorithm for determining approximations of the solution of the optimality system (2.9)- 

(2.10) is then defined as follows: seek Th € Wh and $h G Wh such that 

Ka(Th,Sh) + c(u,Th,Sh) + fah,Sh)rc } 

= (Q,Sh) + K(HN,Sh)rN   VSh€Wh 

and 

Ka(Rh,*h) + c(u,Rh,$h)-}-(Rh,Th-Td)rc = 0   VRh€Wh. (3.3) 

Although the optimality system is linear, the coupling of u and $ in the two equations make the 

derivation of error estimates nontrivial. It turns out to be convenient to apply the Brezzi-Rappaz-Raviart 

theory (see [2], [5], and [7]) to obtain error estimates. 

Theorem 3.1- Let(T,$) and(Th,$h) be the solutions of (2.9)-(2.10), and (3.2)-(3.3), respectively. Assume 

that T, $ € Hm+1(Q.) PI #]>(fi) for some 1 < m < Jfc; also assume that (3.1) holds. Then, 

||r-rh||i + ||$-$h||i 

< Cmax ji, -, l| hm(\\Q\\m-i + \\HN\\r„,m-i/i + ||Td||rc,m-i/a), 

where C is independent ofh, 6, j, T, and $. ■ 

A simple iterative algorithm for solving (2.10)-(2.11) can be defined as follows: 

choose     $(°); 



for n = 1,2,..., solve for T<n) from 

=    "(«<-i),5)re +(Q,S) + K(HN,S)V„   V5 € JT^fl); 
o 

(3.4) 

then solve for *<") from 

Ka(R,&n)) + c(n,RMn)) = -(R,T(n)-T<i)rc   VÄ€fr£(Q). (3.5) 
7 

Of course, ultimately, this algorithm has to be carried out in a discretized version, such as one using a finite 

element method. 
The convergence of this algorithm can be proved as a result of the observation that it is effectively a 

gradient method for the following minimization problem: find g € L2(Tc) such that K(g) := J(T(g),g) is 

minimized where T{g) € H^lfl) is defined as the solution of (2.1). 

Theorem 5.2- Let (r<n>,*(n)) be the solution of (3.4)-(3.5) and (T,$) the solution o/(2.9)-(2.10). Then, 

r^ — T inH})(Q)     and     $(n) -* $ in ff],(f2)  as n — oo. I 

4. Computational Examples 

Let flcHHe the unit square (0,1) x (0,1). Let T = Tc U TD UIV U To be shown as in Figure 1. 

Figure 1. Computational domain 

The finite element spaces Wh are chosen to be piecewise linear elements on a triangular mesh. All the 

numerical results make use of the following parameters and data: 

parameters: K = 1/0.73;    Re = 1;    We = 1;    u = 1/2; 

boundary data: 
rfT 

T = 1   on TD ,        -5- = 0   on r,v U To ; 
on 

heat source: Q = - -£■ ( 9*r2 COS(3JTZ) cos2(;ry) - 4*2 sin2(-irx) cos(2xy) j 

+ (1 - y2)-ö" sin(3xx) cos3(xy); 



velocity profile: u = (l-y2.0), 

elastic extra stress profile: -(4--° Ay3)' 

pressure profile: 

In functional (1.10), we choose 

p=4(l-y2)-x. 

Td = 3.5. 

For the data given above, the exact solution of the uncontroled problem, i.e., for 

^ = 0   onTc, On 

is given by T = 5 sin2(|xr) cos2(xy) + 1. 
We compare the temperature distribution in the uncontroled case with the optimal temperature distri- 

bution in the controled case for which 
dT _ 
3n"=' 0nrc' 

where g is the control such that (1.10) is minimized. Approximations to the optimal state and co-state 
are computed from (3.2)-(3.3); the approximate optimal control g* is then obtained from (2.8), i.e., gh = 
—(l/£)$A|rc. All of the computational results shown below were obtained with the use of a mesh size 
ft = JL. Of course, calculations with varying mesh sizes were performed. Since these merely verified the 
error estimates, we do not report on them here. 

Specifically, Figures 2-4 deal with the following cases: 
1. Exact, uncontroled temperature and; Optimal temperature; 
2. Exact, uncontroled temperature and; Optimal temperature; 
2. Optimal boundary control. 

ma. 

Figure 2. Temperature contours: uncontroled and controled. 
Optimal boundary control on Tc ■ 
(re is the top boundary segment.) 

[To is the right boundary segment.) 



Figure 3. Temperature surfaces: uncontroled and controled. 
(re is the top-right boundary segment.) 

(To is the lower-right boundary segment.) 
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1    Introduction 

The purpose of this paper is to investigate the exact controllability problems for systems modeled 

by linear parabolic differential equations. This problem has been studied extensively in the last 

30 years. A very significant early contribution is due to Egorov ([2], [3]). Another early paper 

is due to GaPchuk ([9]). Many developments in the controllability theory of the linear parabolic 

equations and hyperbolic equations are due to Fattorini and Russell ([4], [5], [19], [20]). Using 

a harmonic analysis method, they obtained results such as approximate controllability and 

conditions on y for the exact controllability of systems governed by hyperbolic and parabolic 

equations. We refer to [7], [8] for more recent development by Furskov and Imanuvilov. 

In this paper we attempt to study the exact controllability problem by examining the limit 

behavior of the corresponding optimal control problem. Using this method we obtained a new 

condition on the exact controllability of the system. We believe that this condition is at least 

comparible condition obtained in [18]. The paper is organized as follows. In §2, we state the 

problem and some results concerning linear parabolic differential equations. In §3 we give a 

constructive proof for the approximate controllability of the system using our method. Finally 

in §4 we give a condition on the exact controllability of the system. 



2    Statement of the Problem, Notation and Preliminaries 

Let Ü be a bounded domain in Rd. For a fixed T, let Q = [0,T\ x Q and S = (0,T) x dQ. On 

the domain Q, let A be the second order elliptic differential operator 

We will assume that c> 0 on Ü and that the matrix (aitj(x)) is symmetric and positive definite. 

Consider now the parabolic initial boundary value problem 

%+Ay   =   0,    inQ, 

%    =   u,    onE, (2-1) 

y(0)    =   yo,    in ft for i = 0. 

Here ^ = £)f j=i ai,jni('^~) where n* is the i - th component of the outward unit normal on 

du. We say that the system is exactly controllable for a given state y if there exists u e L2(Y) 

such that the solution y of problem (2.1) also satisfies 

y(T,-)=y. 

Define a cost functional 

Je(u) = )^ j (y(T,x-u) -y{xjf dx + ^ j^u2{t,x)dxdt, 

where y = y(t,x;u) satisfies (2.1). ue(t,x) is said to be an optimal control if it satisfies 

Je(u€)=    inf    J€(u). (2.2) 
u£L-i(Q) 

For a Banach space X, define 

L2(0,T;X) = {/ : (0,T) - X;   f \\f(t)\\2xdt < oo}. 
Jo 

It is a Hilbert space with the norm 

II/IIL2(O,T;X) = (^
T
|I/WIIX^)". 

Let L?(Q) and L2(<9f2) be the usual L2 function spaces. We shall use the notation 

(<f>,ip) = / <tn/)dx 
Jn 



and 

<<f>,ip >= /    (jnpdu 
JdÜ 

for the inner products and the associated norms will be denoted by || • || and | • |, respectively. 

We also define 

W(0,T) = {/;/€ L\Q,T;Hl(P)),ftE L2(0,T; tf"1^))}, 

where ^ is taken in the sense of distributions on (0,T) with values in H1^).   W(0,T) is a 

Hilbert space with the norm 

ll/llw(0,T) = (H/llL2(0,T;tfi(n)) + ll^lll,2(0,T;//-1(n))2, 

For p, q > 0, let also 

HP*{Q) = L2(0,T;Hq{n))nHp(0,T;L2(U)). 

These spaces are described in [15], and their norms are defined by 

H/lltfP.*(Q) = (H/llL2(0,r;tf9(fi)) + ll/ll/fP(0,T;L2(n)))2- 

The spaces Hp'q(E) with associated norms || • ||HP.«(E) 
are defined similarly by replacing Q by E 

above. 

We recall that if q > \ and p = q—±, then there is a constant c such that for any / G Hp' 2 (Q), 

and iiq>l,ge #«•£(!!) and t e [0,T] then 

\\f(t)\\m-Hn)<4f\\H^iQ) 

and 

|5|//P-1(ÖH) < CHöllH?.f(I;)- 

Define the bilinear form a: H1^) x if1 (ft) -> i? by 

30 dip 

Note that from the properties of the operator A we have that there exist constants ci, &i > 0 

such that 

\a(<f>M< ciWhlWh 

a(<f>,iß) = J { £ av(x)-fa-fa- + c^^dx- 
% ,7 = 1 



and 

a((t>,(j)) > c2| 

for all <f>, il> E Hl(ü). 

We now define the operators for weak solutions of elliptic boundary value problems.  For 

/ G H~l(Q), let Tf G #x(n) denote the unique solution of the problem 

a(Tf,<f>) = UA)    for^etf1^). 

T is a linear operator on H~1(Q). Also since 

(Tf,<f>) = a(Tf,Td>) = (f,T(f>) 

for any /,(/>€ L2(tt), T is self adjoint on L2(Q). Next we introduce the eigenvalue problem 

Aip — A(p,    in Q, 

^ = 0,    on an. 

It is well known that this problem has a system of eigenfunctions {<Pj}^i, forming a complete 

orthonormal set in L2(Q,), with eigenvalues 0 < Ai < A2 < • • • < Xj —► oo as j —> oo. Note that 

if we let Vj — XJ1, then 

T(j)j = Vj(t)j    j = 1,2,.... 

W now consider the weak formulation of problem (2.1) 

for rh f= ffVO.V 
(2.3) 

(f,«£) + a(y,<£)    =    <u,<f>>,    for^Gi?1^), 

j/(o,-) = yo- 

It is well known that if yo G L2(tt) and u G I>2(£) then (2.3) has a unique solution y in W(0,T), 

and there is a constant C, independent of yo and w, such that 

IMIw(o,r) <C(II^II + II«IIL2(E))- 

If u = 0, then the exact solution of (2.3) can be represented by 
oo 

The following lemma can be found in [21]. 

Lemma 2.1 Let (j) G Hp(Cl) for -1 < p < 1. T/ien 
oo 

IIHII = (E(^W)
2AP

)
4 

is an equivalent norm in HP(Q). 



3    Approximate Controllability 

3.1 An operator representation of the terminal state. In the following lemma we state 

the optimality system for the problem (2.2). It will play a central role in obtaining the main 

results of this section and the next section. From now on, we suppress the explicit dependence 

on x, e.g., we will use u(t) to mean u(t, x). 

Lemma 3.1  ([12]) The optimality system of problem (2.1) is given by 

dpe 
aT~APe = ° in Q> at 

&■ = 0 on E, 

pe = y£—y in Q for t = T, 
(3.1) 

(3.2) 

pe   =   —eue on E. 

The weak formulation of the optimality system can be written as follows. 

(4&0) + a(ye,0)    =    \<PeA>,    for^Gff1^), 

-(^tA) + a(pe,<t>)    =   0,    for^Gtf1^), 

l/e(0)     =    2/0, 

Pe(T)   =   y-y£(T). 

To represent the terminal state ye(T) by an operator, we consider, for a given z G L?(Q), 

the system 

(lM + a(yi>0)    =    <Pi>>,    for^G^1^), 

-{^tA)+a{piA)   =   0,    for ^Gi/1^), 

yi(0)  =  o, 

Pi(T)   =   *. 

This system has a unique solution (j/i(i),Pi(i)) e W(0,T). 

Let 22(f) denote the solution operator for the problem 

-— + Aw   =   0 onQ, 

(3.3) 

dt 
dw 
dv 

i.e., 

:   0 on E, 

w   —   z in Q for t = 0, 

w(t) = E(t)z. 



We now define an operator R: L2(Q) -> L2(Q) by 

Rz = yi{T). (3.4) 

Comparing (3.2) with (3.3), we have that 

-R(y(T)-y) = -E(T)v + y(T) (3.5) 
e 

or 

(e + R)(y(T)-y)=e(y-E(T)v) (3.6) 

3.2. Properties of the operator R. 

Lemma 3.2 R € L{L2(Q.),H1(Ü)). Therefore R is a compact operator in L2(Q). 

Proof: Consider the mapping 

z->Pl(t,-) = E(T-t)z. 

We prove that this mapping is continuous from L2{Q) into H*'l{Q). By standard theory for 

parabolic differential equations ([15]) this mapping is continuous from Hl(£l) into #1,2(Q). If 

z € fl-1^) then 

r 1 rl 

/ IIPi(*,OII2dt  =   / D(z,^)2c-^(r-f)Ä 
JO JO   jT{ 

-.    oo 

= 5B*.fc)V(1-c-2A'T> 
<   C||z||_i. 

Hence the mapping is continuous from H~
X
{VL) into L2(Q). By interpolation ([1]) we have that 

R is a continuous mapping from L2(Q) to H^'X(Q). By (3.3), we have that T^|E = PI|E- Thus 

l|ite||i = ||yi(r)||i<C||i/i||Hi.2(Q)<CH. 

The proof is complete. 

Lemma 3.3 R is symmetric and semi-definite. 

Proof:   For given z, z0 € L2(Cl), let (y,p), {yo,po) be the corresponding solutions of (3.3), 

respectively. Then 

(-^,Po) + a(y,pQ) =< p,po >, 



i-^,p) + a(yQ,p) =< Po,P >, 

a(y,Po) = (2/'^Po), 

a(yo,p) = (yo,^p)- 

We therefore have that 

(£y(8),po(8)) + (y(s), ^po(s)) = (^j/o(*),p(*)) + (yo(*), £p(*)) 

or 

■^(yo(s),p(s)) = ^(y(a),Po(a)). 

Integrating the above equality from 0 to T, noting that y(0) = yo(0) = 0, we have that 

(y(T),po(T))    =   £ ^-s(y(s),po(s))ds 

fT d =    I    fo(vo(s)p(s))ds 

=   (y0(T),p(T)) 

or 

(Äz,«o) = (#z0,z). 

Thus Ä is self-adjoint. We also have that 

Integrating the above equality, we have that 
rp 

(Rz,z)= I   \p\2ds>0. 
Jo 

So R is semi-definite. The proof is complete. 

Lemma 3.4 Assume that E is analytic. Then KevR = 0. 

Proof: Under the given assumption we know that p is analytic in Q and on S. Assume that 

Rz = 0. Then from the proof of Lemma 3.3 we have that 

rT 
0 = {Rz,z)= [   \p\2ds. 

Jo 



Thus p = 0 on E. Hence the data corresponding to the Cauchy problem is zero on E which 

implies according to the Cauchy-Kowaleska theorem (since p is analytic) that p = 0 on Q. In 

particular z = p(T) — 0. The proof is complete. 

3.3 Approximate Controllability 

Theorem 3.5 Let y G L2{Q) and (y6,u€) = (ye(t),ue(t)) be the solution of the optimality 

stystem .  Then 

lim||i/e(r)-y||L2(n) = 0. 

Proof: By Lemma 3.2, Lemma 3.3 and Lemma 3.4, and the Gilbert-Schmidt theorem, the 

operator R has a system of eigenfunctions {e^}^ with eigenvalues Ai > A2 > • • • > Xj —> 0 as 

j —* 00. Moreover, {e^}^ forms an orthonormal basis in L2(fl). For y G L2(Q) let 

Then 

Using (3.6) we have that 

Thus 

v- - E(T)v = 

R(y- - E{T)v) 
00 

7, V T\ - ii - 
00 y> eyjej 

7=1 ■> 

00        e2y2 

llye(T)-y|||2(n)   =   E77TXT2 

N        ,27/2 00 

i £(^T)5+ E «a- 

For any given 6 > 0, there exists iV such that 

OO c 

j=JV+l 

For this fixed N there exists ß > 0 such that 



for 0 < e < ß. Thus 

\\Ve(T)-y\\h(H)<S 

for 0 < e < ß. The proof is complete. 

Definition System (2.1) is said to be approximately controllable if, for any given y and 

6 > 0, there exists a control u(t) and a function y(i) such that (y(t),u(t)) is a solution of (2.1) 

and 

\\y(T)-y\\<6. 

The following theorem is an immediate consequence of Theorem 3.5. 

Theorem 3.6 System (2.1) is approximately controllable. 

Remark Approximate controllability is well known for linear parabolic differential equations. 

Our proof is different in that it is a constructive proof. 

4      A Condition for Exact Controllability 

In this section we give a condition on y for the exact controllability of system (2.1). The main 

tool is the operator R introduced in §2.2. 

Theorem 4.1 Let R be the operator defined in §2.2 and ({ej}j±1,{\j}'jLi) be the eigensystem 

of R. Assume that R~l is the inverse of operator R. If 

y - E{T)yQ € D{RTl) 

then system (2.1) is exactly controllable. 

Proof: Assume that 

y-E{T)v = Y,Vie. 
.7=1 

oo 
"•"■j. 

Then 

£|<co- (4.1) 
3=1     3 

By the proof of Theorem 2.6 we have that 

°°     e2»? 



Hence 
oo        £2y2 

\\ye(T)-y\\mn) = (E(e + A
J.)2) 

00  V2-    1 

Let {ejt}^! be a sequence such that efc -> 0 as k -* 00. From the optimality system (3.1) and 

the proof of Lemma 2.3 we have that 

\\y£k(T)\\Hi,HQ)   <   C(Kfc||Hii(E) + ||yo||^(n)) 

* ciffW^^ + WyollH^) 

<   Cil|yo||Hi(n) + c,2- 

Thus there exists a subsequence of {e^}, still denoted as {efc}, and y G Hl>2(Q) such that 

lim y£fc = y    weakly in Hl,2(Q). 
fc—+00 

Using the trace theorem ([1]) and the compact embedding theorem ([1]) in Sobolev spaces we 

also have that there exists u G L2(E) such that 

lim u€k = u   in L (£). 
fc—>oo 

Also by the trace theorem ([1]) we have that y(T) = y and y(0) = yo- We now prove that (y,u) 

is a solution of (2.1). Since (yek(t),uek(t)) is a solution of (2.2) 

{^±A) + <ytkA) =< uefc,0 >,    for 0 G tf1^)- 

Passing to the limit in the above equality we obtain 

(%<t>) +a(y,(f>)=<u,<l>>,    for 0 G tf1^). 
at 

Thus (y,u) G HX'2(Q) x L2{Y) is a solution of (2.1). This proves that u is an exact control. The 

proof is complete. 

Remark 4.1 From the proof of Theorem 4.1 we see that if (4.1) holds, then 

\\ye(T)-y\\LHü)<Ce. 
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It is easy to show that (4.1) is actually a necessary condition for the above inequality to hold. 

In fact, assume that the above inequality holds. Then by the proof of Theorem 2.8 we have that 

9 = 1  ^ ]> 

DO An ,2 

<Ce 
eVi      ,„JI 

Thus 
°°     y2- 

Letting e —► 0, we obtain (4.1). 

Remark 4.2. In [18], Russell gave a condition on exact controllability of system (2.1) using 

the harmonic analysis method. The condition is 

y - E{T)v G ecVÄ 

where C > 0 is a constant and A is the elliptic operator that appears in (2.1). For d = 1, this 

condition implies that y — E(T)v is at least a C°° function. At this moment it is not clear if our 

condition is weaker. However, if the control is distribution we can show that 

DiR'1) = D(A) = H2(ü) 

which is much weaker than D(ec'v(j4)). 
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